
  

 
 

Abstract— Self-supervised magnetic resonance imaging 
(MRI) reconstruction methods can train deep learning networks 
without requiring fully sampled reference data. One such 
approach, self-supervised via data under-sampling (SSDU), 
partitions under-sampled k-space into two disjoint sets, with a 
neural network mapping between them. However, SSDU and its 
variants rely on heuristic k-space partitioning, which may lead 
to suboptimal performance and necessitates new partitioning 
schemes when initial under-sampling patterns change. In this 
work, we propose a novel approach to learn optimal k-space 
partitioning by modeling a probability distribution which we use 
for partitioning. Specifically, we employ the LOUPE framework 
to learn an optimal partitioning probability distribution. 
Furthermore, we introduce a weighted dual-domain self-
supervised loss function that incorporates both k-space and 
image-space loss terms. Evaluations on the fastMRI dataset 
demonstrate that our dual-domain learned partitioning method 
outperforms existing partitioning strategies and adapts to new 
sampling patterns without requiring hand-picked partitioning 
methods. 

Clinical Relevance— Typical MRI protocols are under-
sampled and reconstructed using parallel imaging. Self-
supervised reconstruction can train directly on under-sampled 
clinical data which can improve diagnostic accuracy and/or 
reduce scan times. 

I. INTRODUCTION 

Magnetic Resonance Imaging (MRI) reconstruction is an 
inverse problem which recovers high-fidelity images from 
under-sampled Fourier domain (k-space) measurements. 
Multiple solutions for this inverse problem exist such as 
parallel imaging (PI) and compressed sensing (CS). PI utilizes 
the linear independence of the receiver coils for 
reconstruction [1], [2]. CS casts images into sparse 
representations to reconstruct incoherently under sampled k-
space[3]. 

Deep learning (DL) reconstruction methods have been 
proposed to generate high-quality reconstructions by training 
a network to recover fully sampled k-space from under-
sampled measurements. Many schemes have been proposed 
such as k-space interpolation [4], generative adversarial 
networks [5], diffusion models [6], [7], and physics informed 
neural networks [8], [9]. When these networks are trained 
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with large, fully sampled datasets, DL methods can 
outperform both CS and PI. 

More recently in DL reconstruction, end-to-end DL 
methods have been proposed to jointly optimize k-space 
under-sampling patterns and reconstruction. Two types of 
methods for learned under-sampling patterns have emerged: 
k-space parameterization and probabilistic methods. In k-
space parameterization, the k-space locations are 
parameterized and optimized through gradient descent [10], 
[11], [12]. Parameterizing k-space no longer constrains points 
to a cartesian grid resulting in a highly non-convex loss 
function, requiring additional constraints to the k-space 
parametrization. Conversely,  probabilistic methods learn a 
sampling probability distribution that is then sampled to 
generate a mask [13], [14], [15]. As sampling is a discrete 
operation, these studies rely on relaxations such as a sigmoid 
[13] or the pass-through relaxation [16]. The gradients of the 
weights describing the probability distribution are then 
calculated using the reparameterization trick [17].  

In some circumstances, fully sampled k-space is 
impossible to collect due to factors such as patient motion, 
signal decay, and time constraints. Additionally, clinical 
datasets often acquire under-sampled k-space, relying on PI 
for reconstruction. Self-supervised methods train directly on 
under-sampled k-space, achieving performance comparable 
to supervised approaches [18], [19], [20], [21], [22], [23], 
[24]. Self-supervised reconstruction via data under-sampling 
(SSDU) [25] is a recent method which partitions under-
sampled k-space into two disjoint sets with a network 
mapping between the two. At inference, the original under-
sampled data is passed through the network which generalizes 
to predict fully sampled k-space. Improvements to SSDU 
have been made using a dual domain loss function which  
introduces an image space loss by reconstructing three images 
from the different sets. [26].  

In the original SSDU study, the authors partition k-space 
based on a 2D gaussian probability distribution which was 
empirically validated to perform better than random 
partitioning [25]. Improved partitioning performance was 
realized when the authors of [27] explained SSDU using the 
Noiser2Noise framework [28]. By linking SSDU to a self-
supervised de-noising processes they showed that partitioning 
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by the same distribution that generated the under-sampled 
training data improved performance. Further empirical 
validation to their justification was provided in a study 
utilizing radial self-supervised sampling based on radial 
spokes [29].  

However, the theoretical justification for SSDU does not 
provide insight on how to select distribution parameters. This 
leaves room for potentially improved performance by 
explicitly learning the partitioning distribution in an end-to-
end manner. Notably, one study optimized the initial under-
sampling mask for SSDU in and end-to-end manner which 
improved self-supervised performance [30]. However, to the 
best of our knowledge, no work has attempted to learn the 
optimal partitioning of SSDU directly.  

Our contributions are summarized as follows: 

• We proposed a method to learn the optimal 
partitioning of k-space for self-supervised learning 
in an end-to-end manner by learning a probability 
distribution to partition k-space. 

• We empirically test our method on the fastMRI 
dataset and different initial under-sampling patterns 
and show that learned partitioning consistently 
outperforms heuristically chosen masks. 

• We conduct ablation studies to empirically justify 
the dual domain loss function to prevent model 
collapse. 

II. METHODS 

A. Self-Supervised Learning 

The MRI acquisition can be modeled as a forward process 
defined as: 

𝑦 = 𝑀𝛺𝐴𝑥 + 𝑛 (1) 

where 𝑥 ∈ ℂ𝑛 is a complex vectorized image, 𝐴 is the system 
matrix containing the Fourier transform and coil sensitivities, 
𝑦 ∈ ℂ𝑛 is the acquired under-sampled k-space data, and 𝑛 is 
random gaussian noise. 𝑀𝛺 is a diagonal under-sampling 
matrix drawn from some prior probability distribution. The 

acceleration factor is determined by 𝑅 =
𝑛

𝑚
 where 𝑚 is the 

number of sampled points in the mask ∑ 𝑇𝑟(𝑀Ω).  Self-
supervised learning trains directly on under-sampled k-space 
𝑦 by splitting k-space into two disjoint sets. Given some mask 
𝑀𝛬, under-sampled k-space can be partitioned into two sets: 

𝑦̃ = 𝑀𝛬𝑦  𝑎𝑛𝑑  𝑦̃𝑐 = ~𝑀𝛬𝑦  (2) 

where 𝑦̃ and 𝑦̃𝑐 are disjoint k-space sets and ~𝑀Λ is the 
complement of 𝑀Λ (Fig 1b). It is important to note that 𝑀𝛬 
partitions under-sampled k-space into two sets. The choice of 
𝑀𝛬 is often drawn from a hand-picked probability distribution. 

 A neural network is trained to predict k-space points in  
𝑦̃𝑐 from 𝑦̃. This mapping is learned through the loss function: 

ℒ(𝑀Ω~𝑀𝛬𝑓θ(𝑦̃), 𝑦̃𝑐) (3) 

Where 𝑓θ is a neural network parameterized by θ and ℒ is some 
chosen loss function. In this work, we employ the ℓ1 norm for 
ℒ due to its ability to preserve sharper features. As 𝑓θ outputs 
an estimate for all points in k-space, the masking terms 
𝑀Ω~𝑀𝛬 ensure the loss is only calculated where points 𝑦̃𝑐 
exist. At inference, the initial un-partitioned data 𝑦 is passed 
through the network to get a fully sampled k-space estimate. 

B. Learned Partitioning 

We propose a method to learn the probability distribution 
of 𝑀𝛬 by extending LOUPE [13] for self-supervised learning. 
We define a learned probability distribution 𝑃 as:  

𝜎𝑡(𝑊) =  𝑃 (4) 

Fig. 1. a.) Learned partitioning module for learning optimal partitioning distribution. The distiribution is sampled y adding noise and thresholding b.) 

Partitioning module that partitions undersampled k-space into two sets based on M and ~M. c.) Forward pass of reconstruction network during 

training. Three estimated fully sampled k-spaces from 𝑦̃, 𝑦̂, and 𝑦 d.) At inference only 𝑦 is reconstructed. 

 



  

where 𝑊 ∈ ℝ𝑛 are learnable sampling weights, 𝜎𝑡 is the 
element wise sigmoid with a slope controlled by the 

hyperparameter t: 𝜎𝑡(𝑊) =
1

1+𝑒−𝑡𝑊. We deviate from LOUPE 

by keeping the probability distribution unnormalized, 
allowing the model to learn the acceleration factor for the 
partitioning distribution. 

We sample from the probability distribution 𝑃 by using the 
reparameterization trick [17]:  

𝑀Λ = (𝑃 − 𝑈) > 0. (5) 

Here, 𝑈 ∈ ℝ𝑛 is a uniform distribution over [0, 1] sampled 
independently for each voxel. During gradient calculations, 
this operation is relaxed by using the passthrough method 
[16]. During back-propagation, the gradient of the discrete 
sampling step (4) is replaced by the gradient of a sigmoid 
function with a slope of 300. A schematic of thew whole 
process is described in Fig 1a. 

C. Loss  

Our network has three reconstruction outputs during model 
training. 𝑦̃, 𝑦𝑐̃, and 𝑦 are independently passed through the 
same reconstruction network to produce three fully sampled k-
space estimates: 𝑓θ(𝑦̃), 𝑓θ(𝑦𝑐̃), and 𝑓θ(𝑦) (Fig. 1c). To ensure 
consistency and parameter efficiency, the reconstruction 
network 𝑓θ shares weights across all three inputs.  We choose 
to disable gradient calculations during the forward pass of 
𝑓θ(𝑦) due to improved running time as we alleviate the need 
to backpropagate through reconstruction calculations for 𝑦 
(Fig. 1c). 

 We calculate a dual-domain loss for both multi-coil k-
space and image space. Instead of the original self-supervised 
loss term which predicts 𝑦̃𝑐 from 𝑦̃ we add an additional term 
that predicts the inverse, 𝑦̃ from 𝑦̃𝑐. This adds an additional 
term to the loss function (Fig. 2a): 

ℒ𝑘1
= ‖𝑀𝛺~𝑀𝛬𝑓𝜃(𝑦̃) − 𝑦̃𝑐‖1

1 (6𝑎)

ℒ𝑘2
= ‖𝑀𝛺𝑀𝛬𝑓𝜃(𝑦̃𝑐) − 𝑦̃‖1

1 (6𝑏)
 

To improve performance, a dual domain loss similar to [26] is 
introduced by additionally computing an image space loss 
between all three estimated k-spaces: 𝑓θ(𝑦̃), 𝑓𝜃(𝑦𝑐̃), and 𝑓𝜃(𝑦). 

The image space loss function is:  

ℒ𝑖1
= 𝑆𝑆𝐼𝑀(𝑟𝑠𝑠(𝐹−1𝑓𝜃(𝑦̃)),  𝑟𝑠𝑠(𝐹−1𝑓𝜃(𝑦))))

ℒ𝑖3
= 𝑆𝑆𝐼𝑀(𝑟𝑠𝑠(𝐹−1𝑓𝜃(𝑦̃𝑐)),  𝑟𝑠𝑠(𝐹−1𝑓𝜃(𝑦)))) 

ℒ𝑖3
= 𝑆𝑆𝐼𝑀(𝑟𝑠𝑠(𝐹−1𝑓𝜃(𝑦̃𝑐)),  𝑟𝑠𝑠(𝐹−1𝑓𝜃(𝑦)))) (7)

 

Where 𝐹−1 is the inverse Fourier Transform, 𝑟𝑠𝑠 is the root 
sum of squares operator, and SSIM is the structural similarity 
index (SSIM) (Fig. 2b). 

 The final loss function is: 

ℒ =  λℒ𝑘1
+ (1 − 𝜆)ℒ𝑘2

+  𝛽1ℒ𝑖1
+ 𝛽2ℒ𝑖2

+ 𝛽3ℒ𝑖3
 (8) 

Figure II.1 Reconstructed images from different deep learning methods on the top row. Bottom left is initial undersampling distribution. Bottom row is 
zoom of red box to better display fine details.  

 

 

Fig 2. a.) Self-supervised k-space loss b.) Image space loss. ℒ𝑖1
is the 

image loss between the input and DC recon. ℒ𝑖2
 is the image loss 

between input and initial recon. ℒ𝑖3
 is the image loss between DC and 

initial recon. 



  

Where 𝛽1, 𝛽2, and 𝛽3 are image space loss scaling factors and 
𝜆 is a k-space loss scaling factor (Fig. 2). 𝜆 is scaled between 
[0, 1] to balance the importance of the 𝑓𝜃(𝑦̃) and the 𝑓𝜃(𝑦̃𝑐) 
reconstruction output on the loss. At inferences the network 
can generalize to fully sampled k-space by passing the original 
under-sampled k-space to the network 𝑓𝜃(𝑦).  

D. Implementation Details 

 We implement all models in PyTorch and train on a 
multi-instance NVIDIA A100 GPU with 20 GB of memory, 
utilizing 3/8 of the total compute power. We use the Adam 
optimizer [31] with a learning rate of 10−3, train for 50 epochs 
with a batch size of 3. We set the k-space loss scaling factor 
λ to 0.60 and 𝛽1 to 7.1𝑥10−7, 𝛽2 to 7𝑥10−7 and 𝛽3 to 8𝑥10−8 
based on a random hyperparameter sweep. For 𝑓𝜃 we use an 
end-to-end VarNet [9] which is an unrolled physics informed 
neural network that estimates coil sensitivities and consists of 
data consistency and a denoising neural network steps. The 
center 10x10 region of k-space is left sampled for both 𝑦̃ and 
𝑦̃𝑐 for coil sensitivity estimation. The VarNet is unrolled for 6 
cascades for a reconstruction network with 15M parameters. 
The learned partitioning model adds an additional 65K 
parameters.  

E. Datasets 

We evaluate our method using the fastMRI dataset, a multi-
channel raw k-space brain dataset. [32]. We exclude the test 
data and partition the training and validation sets ourselves. 
For simplicity, we use 16 channel data and the T1-weigthed 
images pre and post contrast administration. We split the 
remaining data volume wise into 145, 18, and 19 volumes 
(2874, 282, 292 slices) for training, validation, and testing. 
We preprocess the data by removing alternating lines in the 
phase-encoding direction and apply zero-padding to a matrix 
size of [320, 320] to maintain a consistent input size. We set 
the network outputs for zero-padded regions to zero. 

F. Comparative Methods 

We train 3 other self-supervised models as comparative 
methods. All methods use the same VarNet reconstruction 
network. We train SSDU with gaussian  partitioning based on 
the original SSDU paper which we call SSDU [25]. We also 
train a SSDU variant that is partitioned with the same 
distribution as the original sampling distribution 𝑀𝛺 which 
we call Noiser2Noise [27]. The last comparative self-
supervised network is partitioned using the same strategy as 

the Noiser2Noise model but is trained with the dual domain 
loss function.  

We additionally train two supervised reconstruction 
networks as a baseline. We first trained a supervised VarNet 
with a k-space only ℓ1 loss. We next train a supervised dual 
domain VarNet with an ℓ1k-space loss and SSIM image space 
loss. The SSIM loss is scaled relative to the ℓ1 loss by a factor 
of 10−4.  All comparative methods have the same number of 
parameters and only differ based on partitioning and loss 
functions. 

Our first experiments explored the qualitative and 
quantitative effects of the initial sampling masks 𝑀𝛺 at an 
acceleration factor of R=6. We tested 3 masks: a 1D and 2D 
polynomial order 8 variable density initial under-sampling 
pattern, and a parallel imaging under-sampling pattern. We 
next train networks on a 2D polynomial order 8 variable 
density initial under-sampling pattern at different 
accelerations factors. Finally, we performed an ablation study 
by removing the dual domain loss function and the triple 
reconstruction output to study the effects of the components 
of the model to performance. 

III. RESULTS 

Qualitative comparisons between the self-supervised 
reconstruction methods at R=6 with an initial 2D variable 
density sampling pattern is shown in Fig. 4. The quantitative 
metrics for the entire test dataset are shown in the top left of 
each image. The lower row displays magnified brain regions 
to better show fine details. All self-supervised methods 
produce high quality reconstructions with very minimal 

 

 1D Distribution Parallel Imaging 

 SSIM NMSE SSIM NMSE 

SSDU 0.74092 0.03301 0.73667 0.04487 

Noiser2Noise 0.75083 0.03249 0.76182 0.03391 

Dual Domain 

Noiser2Noise 

0.75098 0.03174 0.75973 0.03456 

Dual Domain 

Learn Partitioning 

0.76959 

 

0.03141 0.76437 

 

0.03359 

Supervised 0.75513 0.03117 0.75321  0.03151 

Dual Domain 
Supervised 

0.87421 0.01655 0.87324 
 

0.01474 

 

TABLE I. QUANTITATIVE PERFORMANCE METRICS ON DIFFERENT 

INITIAL DISTRIBUTIONS 

Fig 4. The resulting learned partitioning distributions with the initial 
undersampling distributions. 



  

residual aliasing. Dual domain with learned partitioning 
resulted in the lowest error and sharper features than the other 
self-supervised partitioning methods. Quantitative evaluation 
further supports these findings, with our method achieving the 
highest SSIM of 0.7273 and the lowest NMSE of 0.030524. 
Dual domain supervised performs best but has access to fully 
sampled k-space data. 

Quantitative comparisons between self-supervised 
methods with the remaining initial sampling patterns are 
shown in Table 1. We compare two different under-sampling 
distributions: 1D variable density and parallel imaging. Since 
parallel imaging has a deterministic sampling distribution, 
Noiser2Noise method [27] used a 2D variable density of R=2 
for partitioning. The quantitative metrics for different 
sampling patterns follows the pervious results with dual 
domain learned partitioning performing with the lowest error 
with SSIM values of 0.76959 and 0.76437 for 1D and parallel 
imaging respectively.  

  The learned partitioning distribution for each initial 
sampling distribution at R=6 can be seen in Fig.4. The learned 
distribution for 2D initial distribution converges to a similar 
distribution to the 𝑀𝛺  sampling distribution which is 
consistent to the theoretical justification for SSDU [27]. The 
probability distribution differs slightly from 𝑀𝛺 as the low 

frequency center region is more rough allowing for low 
frequency information to pass to both sets. The 1D 
distribution does not follow the theoretical justification in 
[27]. For 1D sampling distribution, the learned partitioning 
resembles a composition between 1D and 2D distributions 
with the network learning uneven center high frequency 
regions. For the parallel imaging sampling distribution, there 
does not exist a theoretically justified partitioning distribution 
due to deterministic sampling. Since the initial mask is fixed, 
the network only learns parameters in regions that are 
sampled. Again, the center of k-space has an uneven texture 
allowing for low frequency information to path to both sets. 

To compare our methods robustness at different 
acceleration factors, we train self-supervised models at R=2, 
4, 6, 8. Quantitative metrics of SSIM and NMSE between 
self-supervised methods are shown in Fig. 5. Learned 
partitioning performs with lower error for all acceleration 
factors and highest SSIM values compared to heuristic 
partitioning. Supervised has the best performance but has 
access to fully sampled data.    

To show the necessity of model training components, we 

train 4 ablation models all with learned partitioning. We first 

trained learned partitioning with the original SSDU loss 

function (5a) termed learned partitioning SSDU. Next, we add 

the double k-space loss term (5a+5b) which we name 𝑦̃,𝑦̃𝑐-

SSDU. As 𝑓𝜃(𝑦) is not needed in the loss term we only 

reconstruct the input and DC sets. We additionally train a dual 

domain model with only the input and DC set reconstruction 

output named 𝑦̃, 𝑦̃𝑐-Dual Domain. For the final ablation, dual 

domain unweighted loss, we introduce 𝑦 as a reconstruction 

output but fix α = 0.5 and all β to 7 × 10−7. Quantitative 

metrics from all models are shown in Table 2. Applying 

learned partitioning directly to SSDU results in a drastic 

performance decrease and yields visibly degraded image 

quality, reflected in the significantly lower loss. The addition 

of the reconstruction k-space loss stabilizes training. The 

addition of the dual domain loss function adds an 

improvement as both reconstructed images stay consistent. 

Finally, the introduction of 𝑦 adds a significant improvement 

on the quantitative metrics.  

IV. DISCUSSION AND CONCLUSION 

In this work we developed a learned partitioning network 
for self-supervised learning which alleviates the need for 
hand-picked partitioning schemes. This network adds small 
quantity (~65k) of new parameters compared to SSDU and 
improves the performance over dual domain self-supervised 
methods. Our method results in smaller errors for all types of 
initial sampling distributions and acceleration factors which 

Fig. 5 Quantitative metrics over different acceleration factors. Top: 
normalized mean squared error metric. Bottom: Structural similarity 
index. 

TABLE II. QUANTITATIVE ABLATION RESULTS 

 SSIM NMSE 

Learned Partitioning SSDU 0.54027 0.12139 

𝑦̃, 𝑦̃𝑐-SSDU 0.74115 0.03832 

𝑦̃, 𝑦̃𝑐-Dual Domain 0.74972 0.03658 

Dual Domain Unweighted Loss 0.76170 0.03465 

Our Method 0.77273 0.03052 

 



  

show the importance of partitioning in self-supervised 
learning.  

Previous studies have shown that learned sampling 
improves reconstruction performance by identifying the 
optimal k-space locations for image reconstruction [11], [12], 
[13], [33], [34], [35], [36]. Our findings show that learning an 
optimal partitioning method can also improve reconstruction 
performance. Near the center of k-space, the learned 
partitioning distribution is no longer smooth and resembles a 
Poisson disc sampling pattern with a discrete probability 
distribution [37]. One possible explanation for converging to 
a discrete distribution at the center of k-space is that both sets 
𝑦̃ and  𝑦𝑐̃ get a representative portion of the low frequency 
data, which carries the majority of the signal intensity. 
Another possible explanation is that the data around a k-space 
point is highly correlated due to the receiver coil sensitivities. 
By learning a Poisson disc pattern near the center, k-space 
points are evenly spaces so the network can effectively reduce 
the loss by inferring neighboring k-space points using coil 
sensitivities. Meanwhile, the regions outside of the low 
frequency center resemble more of the initial sampling 
distribution which reflects the findings in the theoretical 
framework.   

The ablation studies show the necessity for the three 
reconstruction outputs in learning self-supervised partitioning 
distributions. This requirement can be seen in the learned 
partitioning SSDU row in Fig 5. When applying LOUPE to 
learn partitioning in SSDU, the learned partitioning 
distribution solely prioritizes the center of k-space which 
contains high energy k-space. This bias is due to the networks 
ability to trivially reduce the loss function by learning an 𝑀Λ 
that only calculates the loss on low energy k-space regions. 
This trivial loss minimization results in a poorly 
representative partitioning of k-space, ultimately leading to 
suboptimal reconstruction performance.  

The primary limitation of this work is the introduction of 
new hyperparameters for scaling the k-space and image-space 
losses. Additionally, dual domain learned partitioning 
reconstructs three images in each forward pass, resulting in a 
threefold increase in computational and memory 
requirements compared to SSDU. Future work will focus on 
reducing the need for additional hyperparameters, 
accelerating training, and to further understand the 
performance benefit in dual domain methods. 
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